Resource information
Elucidating the impact of Land Surface Temperature (LST) is an important aspect of urban studies. The impact of urbanization on LST has been widely studied to monitor the Urban Heat Island (UHI) phenomenon. However, the sensitivity of various urban factors such as urban green spaces (UGS), built-up area, and water bodies to LST is not sufficiently resolved for many urban settlements. By using remote sensing techniques, this study aimed to quantify the influence of urban factors on LST in the two traditional cities (i) Panaji and (ii) Tumkur of India, proposed to be developed as smart cities. Landsat data were used to extract thematic and statistical information about urban factors using the Enhanced Built-up and Bareness Index (EBBI), Modified Normalized Difference Water Index (MNDWI), and Soil Adjusted Vegetation Index (SAVI). The multivariate regression model revealed that the value of adjusted R2 was 0.716 with a standard error of 1.97 for Tumkur city, while it was 0.698 with a standard error of 1.407 for Panaji city. The non-parametric correlation test brought out a strong negative correlation between MNDWI and LST with a value of 0.83 for Panaji, and between SAVI and LST with a value of 0.77 for Tumkur. The maximum percentage share of cooling surfaces are water bodies in Panaji with 35% coverage and green spaces in Tumkur with 25% coverage. Apparently, the UGS and water bodies can help in bringing down the LST, as well as facilitating healthy living conditions and aesthetic appeal. Therefore, the significance of ecosystem services (green spaces and water bodies) should be given priority in the decision-making process of sustainable and vibrant city development.