Resource information
Analyses of the scale and structural characteristics of construction land serve as the basis for optimizing the spatial pattern of territorial planning. Existing studies have focused mainly on the horizontal expansion of urban construction land. Therefore, based on the Google Earth Engine (GEE) platform, in this paper, we use high-precision land-use cover data, DEM data and socioeconomic data to construct the standard dominant comparative advantage index (NRCA) using the geological mapping analysis method and we systematically analyze the horizontal scale, slope spectrum characteristics, gradient effects and driving factors of construction land in the Lanzhou–Xining urban agglomeration (LXUA) from 1990 to 2020 at four scales: the urban agglomeration, provincial area, typical city and county (district) scales. The results of the study show that urban construction land, rural settlement land and other construction land in the LXUA show “linear”, inverted-“U” and “J” growth patterns, respectively. Three types of construction land show different spatial transfer characteristics. The scale and extent of climbing of urban construction land in the LXUA is gradually decreasing over time, and the number of climbing rural settlement lands in 2000–2010 was as high as 34 counties (districts), while the number of counties (districts) with strong climbing degrees of other construction land rose to 12 from 2010 to 2020. The relative hotspots of the slope-climbing phenomenon of the three types of construction land have gradually expanded spatially, with Lanzhou city and Xining city as the center, and the overall spatial characteristics are “more in the east and less in the west”. The population and GDP are the main factors influencing the slope-climbing phenomenon of urban construction land, while rural settlements are influenced mainly by natural conditions, and accessibility is the key factor affecting other construction land.